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Abstract. A daunting challenge in the area of computational biology has been to develop a method
to theoretically predict the correct three-dimensional structure of a protein given its linear amino
acid sequence. The ability to surmount this challenge, which is known as the protein folding prob-
lem, has tremendous implications. We introduce a novel ab initio approach for the protein folding
problem. The accurate prediction of the three-dimensional structure of a protein relies on both the
mathematical model used to mimic the protein system and the technique used to identify the correct
structure. The models employed are based solely on first principles, as opposed to the myriad of
techniques relying on information from statistical databases. The framework integrates our recently
proposed methods for the prediction of secondary structural features including helices and strands, as
well as β-sheet and disulfide bridge formation. The final stage of the approach, which culminates in
the tertiary structure prediction of a protein, utilizes search techniques grounded on the foundations
of deterministic global optimization, powerful methods which can potentially guarantee the correct
identification of a protein’s structure. The performance of the approach is illustrated with bovine
pancreatic trypsin inhibitor protein and the immunoglobulin binding domain of protein G.

Key words: Protein folding, Tertiary structure prediction, Secondary structure, Global optimization

1. Introduction

Proteins serve as vital components in our cellular makeup and perform many bio-
logical functions that are essential for sustaining life. An important feature which
determines the functionality of a protein is the form of its three-dimensional struc-
ture. The structure, in turn, is related to the protein sequences encoded by our
genes, and these sequences have recently been identified as part of the data from
the human genome project. Therefore, a logical undertaking upon completion of
the human genome project, and an important step in understanding and treating dis-
ease, is to develop a method to predict the structure of a protein given its sequence
information.

The difficulty in addressing the protein folding problem arises from the com-
plexity inherent to the intricate balance of molecular forces which define the nat-
ive three-dimensional structure of the system. Experimental observations have re-
vealed the fact that many proteins fold spontaneously from random disordered
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states into compact states of unique shape. However, the mechanisms that govern
this transformation are not yet fully understood.

Accurate prediction of the three-dimensional structure of a protein relies on
both the mathematical model used to mimic the protein system and the technique
used to identify the correct structure. This work represents the final stage in a
novel approach for ab initio prediction of the three dimensional structures of pro-
teins. In contrast to database driven predictions, the initial stages of this approach
provide information on both secondary and tertiary structural features using only
the amino acid sequence. The methods rely on a coupled decomposition, combin-
atorial optimization and global optimization scheme to identify dominant struc-
tural elements. In the final stage, this information is then combined to formulate
a global optimization problem for the full system, whose solution provides the
overall tertiary fold of the protein.

The first stage of the approach focuses on secondary structure prediction of α-
helical segments. This is accomplished through detailed atomistic level modeling
of overlapping subsequences of the overall protein sequence and free energy calcu-
lations. For each subsequence, global optimization is used to identify an ensemble
of low energy structures along with the global minimum energy conformation.
Analysis of these results provides a means to identify the potential for α-helix
formation (Klepeis and Floudas, 2002a).

The positions of additional secondary structural elements, including β-strand
conformations, are determined through the analysis of residue properties, includ-
ing hydrophobic propensities. Residue classifications are then used to formulate
a problem to predict the formation of ordered structural features, such as parallel
and antiparallel β-sheets. This formulation results in a set of integer linear pro-
gramming (ILP) problems, which can be solved to global optimality to identify
a set of optimal hydrophobic contacts. Solutions to these ILP problems represent
potential β-sheet configurations for the overall protein. The formation of disulfide
bonding pairs can also be identified within the context of the ILP model (Klepeis
and Floudas, 2002b).

The final stage of the approach couples the preceding information to predict
the overall tertiary fold of the protein. The positions of both α and β secondary
elements and disulfide bonding pairs are first used to derive distance and angle
restraints. This leads to a sparse system of restraints which can be treated as a
constrained global optimization problem. The formulation incorporates detailed
atomistic level energy modeling so that the energetically most stable conformation
satisfying the imposed constraints is identified.

These modeling and optimization components have been combined into a single
approach, ASTRO-FOLD, which predicts the three dimensional structures of pro-
teins given only their amino acid sequence. The overall approach, a schematic of
which is given in Figure 1, has been applied to several protein sequences, including
the 58 residue bovine pancreatic trypsin inhibitor protein and the 56 residue im-
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Figure 1. Overall schematic for prediction of native three-dimensional structures of proteins
using ASTRO-FOLD.

munoglobulin binding protein of protein G. These results indicate the possibility
for significant advances in the theoretical treatment of the protein folding problem.

2. Physical understanding of protein Ffolding

An important question regarding the prediction of the native folded state of a
protein is how the formation of secondary and tertiary structure proceeds. Two
common viewpoints provide competing explanations to this question. The classical
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opinion regards folding as hierarchic, implying that the process is initiated by fast
formation of secondary structural elements, followed by the slower arrangement of
the tertiary fold. The opposing perspective is based on the idea of a hydrophobic
collapse, which suggests that tertiary and secondary features form concurrently.

Inherent to the hierarchical view of protein folding is the dominant role of local
forces in determining the formation of secondary structure. These local forces de-
note those interactions between neighboring residues, rather than nonlocal forces
that may arise during tertiary structure formation. In other words, local sequence
information should be sufficient to predict native secondary structure if folding
is hierarchic. In considering the local prediction of secondary structure elements,
such as α-helices, β-strands and turns, most methods rely on statistical treatments
(Munoz and Serrano, 1994). More recent work has led to the proposal of a physical
theory for secondary structure formation based on local interactions and sterics
(Baldwin and Rose, 1999a,1999b; Srinivasan and Rose, 1999) The basis for this
theory hinges on the role of intrinsic propensities for backbone conformations and
backbone hydrogen bonding.

The alternative perspective stresses the importance of the hydrophobic collapse
rather than local propensities in determining a protein’s fold. In this view, hy-
drophobic forces drive the collapse through the desolvation of side chains. It is
believed that these non-local side chain interactions influence the formation of
tertiary as well as secondary structural elements (Dill, 1999). In addition, these
ideas suggest that simple side chain models of protein folding may be sufficient to
predict folding behavior.

For both cases experimental evidence has been produced to support the under-
lying claims. For example, kinetic studies have shown that elements of secondary
structure common to the native fold are able to form before substantial tertiary
structure arrangement. The boundaries of helical structure can also be identified
through local sequence information, implying that local interactions dominate helix
formation. In addition, fragments of longer protein sequences can form native-
like folds in absence of long range interactions (Baldwin, 1995). On the other
hand, support for non-hierarchical folding through a hydrophobic collapse includes
experiments showing that protein folds are less affected by mutations on their
surfaces than in their hydrophobic cores (Lim and Sauer, 1991). In addition, hy-
drophobic collapse, like secondary structure formation, occurs rapidly in certain
cases (Chan et al., 1997). Other results, such as the formation of β-sheet folds
through α-helical intermediates (Hamada et al., 1996), imply that secondary units
are not preassembled and can be driven by tertiary structure formation.

3. Secondary structure prediction

Secondary structure prediction is an important precursor in tackling the overall
protein folding problem, and many methods have been developed in an attempt
to accurately predict the location of α-helices and β-strands. The most successful



AB INITIO TERTIARY STRUCTURE PREDICTION OF PROTEINS 117

methods rely on homology modeling or multiple sequence alignments to predict
secondary structure using only the amino acid sequence. If the databases of ex-
perimental structures contain significantly similar (homologous) sequences to the
target sequence, then local conformation patterns, such as α-helices and β-strands,
can be predicted with accuracy that in certain cases can exceed 70 percent. How-
ever, many protein sequences do not possess known structural homologues, which
causes a significant decrease in prediction accuracy.

3.1. HELIX PREDICTION

It is interesting to note that simulations of a hydrophobic collapse through side
chain models fail to predict the formation of α-helices. This indicates that simpli-
fied models for protein folding may not be sufficient because they lack a full struc-
tural and energetic description of secondary structure formation. Other methods,
such as those based on a statistical treatment for helix determination, as referred to
above, have been effective, but lack a true physical basis.

Recently, a method has been presented in which the physical principles of hier-
archical folding are used for the prediction of α-helices in protein systems (Klepeis
and Floudas, 2002a). The support for this approach for α-helix determination is
based on observations that native like segments of helical secondary structure form
rapidly. The ability for helices to overcome Levinthal’s paradox suggests that α-
helix formation can occur during the earliest stages of protein folding. Such a
mechanism for the helix-coil transition is based on local interactions which induce
nucleation and propagation of the helix.

An important component of this approach is that some information regarding
helix formation is retained locally, which is evidenced by experimental observa-
tions regarding the strong nucleation characteristics of helices. To capture local
interactions and the unique positioning of each residue in the overall protein, the
protein sequence is decomposed into overlapping oligopeptides. The analysis also
involves detailed atomistic level modeling, and the refinement of helix propensities
according to polarization and ionization energies calculated through the solution of
the Poisson Boltzmann equation, which eliminates approximations based on force
field electrostatics. The end result is the prediction of helical segments according
to the average helix propensity assigned to each residue.

The overall approach for the ab initio prediction of helical segments in poly-
peptides is based on the key ideas of (i) partitioning the sequence of aminoacids
into oligopeptides (e.g., pentapeptides, heptapeptides) such that consecutive oli-
gopeptides are shifted by one aminoacid. (ii) atomistic level modeling of all ap-
propriate interactions for each oligopeptide using the ECEPP/3 force field; (iii)
generation of an ensemble of low energy conformations for each oligopeptide us-
ing global optimization based approaches (e.g., αBB, CSA); (iv) incorporation of
the entropic contributions and free energy calculations for each oligopeptide; (v)
calculations of the contributions to free energy due to the formation of cavity for
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selected oligopeptides; (vi) calculations of the solvation contribution to free en-
ergy using the nonlinear Poisson–Boltzmann equation for selected oligopeptides;
(vii) calculations of the ionization contribution to free energy using the nonlinear
Poisson–Boltzmann equation for selected oligopeptides; (viii) calculation of equi-
librium occupational probabilities for the helical clusters based on the free energies
of the oligopeptides; and (ix) classification of residues as helical according to av-
erage propensities for each residue as calculated by the equilibrium occupational
probabilities for the helical clusters.

The approach has been applied the location of α and 3−10 helices for a variety
of proteins which have been studied both experimentally and through simulation
(Klepeis and Floudas, 2002a). The results provided by this approach for bovine
pancreatic trypsin inhibitor protein and the immunoglobulin binding domain of
Protein G are used as input for the overall tertiary structure prediction of the system.
For the case of bovine pancreatic trypsin inhibitor, helical regions are predicted
between residues 2–5 and 47–54, which agrees well with the experimental ob-
servations of helices between 3–6 and 46–55. For the immunoglobulin binding
domain of Protein G, one α-helix domain is assigned between residues 23–34,
almost exactly matching position of the helix in the experimental structure.

3.2. β-STRUCTURE PREDICTION

A major hindrance to the accurate prediction of the tertiary structure of proteins
has been the correct identification of β-structure. A number of methods provide
relatively effective means for anticipating the positions of helical segments; how-
ever, many of these methods have been based on the use of statistical databases
and pattern recognition algorithms for three-state (helix, extended, coil) second-
ary structure prediction. In stark contrast to the helix predictions, the statistical
methods regularly fail in the prediction of β-strands.

To circumvent these limitations, a novel methodology for the prediction of β-
strand and β-sheet conformations, as well as disulfide bridge arrangements has
been developed (Klepeis and Floudas, 2002b). In this approach, a simplified model
is developed according to residue properties, including hydrophobic propensities,
which can be derived from experimental or purely computational information.
Residue classifications are used to formulate a problem to predict the formation
of ordered structural features, such as parallel and antiparallel β-sheets. This for-
mulation results in a set of integer linear programming (ILP) problems, which can
be solved to global optimality to identify the optimal set of hydrophobic contacts.
Solutions to these (ILP) problems represent potential β-sheet configurations for the
overall protein. The formation of disulfide bonding pairs can be identified within
the context of the (ILP) model.

The proposed approach for the prediction of antiparallel β-sheets, parallel β-
sheets and disulfide bridges borrows key concepts from a mathematical framework
developed in the area of process synthesis of chemical systems (Floudas, 1995).
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The approach is based on the idea that β-structure formation relies on a hydro-
phobic driving force. To model this hydrophobic force, it is necessary to predict
contacts between hydrophobic residues.

The first important component is the postulation of a β-strand superstructure
that encompasses all alternative β-strand arrangements of interest. It is important
to emphasize that the superstructure may include more β-strands than needed. That
is, it may postulate the existence of a β-strand which may eventually not be selected
to participate in the β-sheet topology, and therefore not exist as a β-strand.

The second key component involves the development of a single mathemat-
ical model to describe the topology of the postulated superstructure. This model
includes binary variables representing the existence or not of the β-strands and
binary variables denoting the connectivity of the postulated β-strands. In addition,
several constraint sets are delineated in the model so as to represent the antiparallel
and parallel arrangements, the physically consistent structures and the disulfide
bridges. The main concept in the model derivation relies upon the potential con-
tacts between pairs of hydrophobic amino acids, and the objective function aims at
maximizing the hydrophobic–hydrophobic contact energy. The proposed model is
an Integer-Linear Programming (ILP) model.

The third component of the proposed framework is the solution of the resulting
mathematical model that extracts from the postulated β-strand superstructure the
globally optimal solutions of (a) the contacts of hydrophobic residues, (b) the ex-
istence of β-strands and their arrangements to form β-sheets, and (c) the disulfide
bridge configuration. It is important to emphasize that given the nature of the
(ILP) model, a rank ordered list of the second best, third best, etc. solutions can
be generated along with the globally optimal solution.

The most important aspect of the approach is not the accurate prediction of
potential β-strands, but that β-sheet, including disulfide bridge, topologies are
identified. The approach has been used to predict β-strand topologies for a number
of protein systems, and the results for bovine pancreatic inhibitor protein and the
immunoglobulin binding domain of protein G are in included in this work for the
tertiary structure prediction of these proteins. Specifically, for bovine pancreatic
trypsin inhibitor the approach provides a match for β-strands between residues
17–23 and 29–35, as well as an additional contact between residues 44–46 and 20–
22. For the immunoglobulin binding domain of protein G, β-sheets form between
strands defined by residues 43–45 and 51–55, as well strands defined by residues
1–7 and 16–21. An additional match is predicted to occur between the first and last
β-strands, in accordance with parallel β-sheet formation.
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4. Derivation of restraints

4.1. HELIX AND β-RESTRAINTS

For those residues predicted to assume α-helical and β-strand conformations, di-
hedral angle bounds are assigned according to the values given in Table 1. In
addition, for α-helices, Cα–Cα distances can be restrained between each pair of
i and i + 3 residues, in anticipation of the formation of the α-helix hydrogen bond
network. In a similar fashion, Cα–Cα restraints can be developed for residues in op-
posing strands of a β-sheet fold, so that hydrogen bond formation between strands
is enforced. Unlike the helix-based restraints, these restraints are not based on
local interactions; instead, the restraints reflect tertiary structure formation between
opposing strands in the β-sheet network. The β-strand restraints include both hy-
drophobic residues and intervening residues; more specifically, between the turn
and the full extent of the β-sheet. The corresponding upper and lower distance
bounds are given in Table 2. Finally, distance restraints are included for those
cystine residues participating in a disulfide bridge network. In this case, sulfur
atoms of the opposing cystine residue are constrained between 2.01 and 2.03 Å.

Table 1. Dihedral angle bounds, lower and upper,
for α-helix and β-strand residues

Conformer φL φU ψL ψU

α −85 −55 −50 −10

β −155 −75 110 180

Table 2. Cα-Cα distance bounds, lower and up-
per, for α-helix and β-strand residues

Conformer dL dU

α 5.50 6.50

β 4.50 6.50

4.2. LOOP RESTRAINTS

Additional restraints can be generated through analysis of the unassigned residues,
that is, those not assigned to helical or strand regions in the protein sequence.
Specifically, fragments of unassigned residues between two consecutive secondary
structures comprise a set of candidate loop segments. Two methods have been
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Figure 2. Potential energy terms in ECEPP/3 force field. rij refers to the interatomic distance
of the atomic pair (ij). Qi and Qj are dipole parameters for the respective atoms, in which
the dielectric constant of 2 has been incorporated. Fij is set equal to 0.5 for 1–4 interactions

and 1.0 for 1–5 and higher interactions. Aij , Cij , A
′
ij and Bij are nonbonded and hydrogen

bonded parameters specific to the atomic pair. Eo,k are parameters corresponding to torsional
barrier energies for a given dihedral angle. θk represents any dihedral angle. ck takes the values
-1,1, and nk refers to the symmetry type for the particular dihedral angle.

developed for the derivation of these restraints. The first method proceeds in a
manner similar to that of the prediction of helical segments in that a series of
free energy calculation for overlapping oligopeptides is performed. The second
method involves the simulation of the entire loop fragment. The form of the derived
restraints include tightened dihedral angle bounds (φL and φU ) for those residues
connecting consecutive elements of secondary structure.

For both approaches the derivation of restraints involves the sampling of the
energy surface through global minimization and the generation of a low energy
ensemble. The basic formulation involves:

min
φ

Eforcefield(φ) (1)

subject to φLi � φi � φUi , i = 1, . . . , Nφ.

Here the φ represent the variables used to describe a protein conformation in the
torsion angle space, while φL and φU indicate the lower and upper bounds on
these variables (which include both backbone and side chain degrees of freedom).
The energy function, Eforcefield(φ) is based on the atomistic level ECEPP/3 force
field, which is described in Figure 2 (Némethy et al., 1992). The basic components
include electrostatic terms, 6–12 based van der Waals potential for non-bonded
interactions, modified 10–12 van der Waals potential for possible hydrogen-bonded
interactions, and torsional terms. The detailed energy modeling greatly increases
the complexity of the objective function. It should also be noted that the trans-
formation from Cartesian to internal coordinate space results in highly nonlinear
functions. That is there is not a one-to-one correspondence between distances and
internal coordinates. The advantage for working in dihedral angle space is that the
variable set decreases, with the disadvantage being the increased nonconvexity of
the energy hypersurface.
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In order to solve the formulation given by Equation (1) to provide ensembles
of low energy conformers, powerful search techniques classified within the realm
of global optimization must be utilized. Although many such methods have been
developed, the major limitation is that the majority of the methods depend strongly
on heuristics and initial point selection. To circumvent these difficulties, the applic-
ation of deterministically based global optimization approaches is required. One
such method, the αBB global optimization approach (Androulakis et al., 1995;
Adjiman et al., 1996,1997,1998a,b) has been extended to identifying global min-
imum energy conformations of peptides. The development of this branch and bound
method was motivated by the need for an algorithm that could guarantee con-
vergence to the global minimum of nonlinear optimization problems with twice-
differentiable functions (Floudas, 1997,2000). The application of the αBB to the
minimization of potential energy functions was first introduced for microclusters
(Maranas and Floudas, 1992,1993), and small acyclic molecules (Maranas and
Floudas, 1994a,b). The αBB approach has also been applied to general constrained
optimization problems (Androulakis et al., 1995; Adjiman et al., 1996,1998a,b)
In more recent work, the algorithm has been shown to be successful for isol-
ated peptide systems using the ECEPP/3 potential energy model (Maranas et al.,
1996; Androulakis et al., 1997), and including several solvation models (Klepeis et
al., 1998; Klepeis and Floudas, 1999). αBB based global optimization techniques
have also been applied to NMR type structure prediction problems (Eyrich et al.,
1999; Klepeis et al., 1999; Standley et al., 1999).

The αBB global optimization approach effectively brackets the global minimum
by developing converging sequences of lower and upper bounds. These bounds are
refined by iteratively partitioning the initial domain. Upper bounds on the global
minimum are obtained by local minimizations of the original nonconvex problem.
Lower bounds belong to the set of solutions of the convex lower bounding prob-
lems, which are constructed by augmenting the objective and constraint functions
through the addition of separable quadratic terms. The lower bounding formulation
can be expressed in the following manner:

min
φ

Lforcefield(φ), (2)

subject to φLi � φi � φUi , i = 1, . . . , Nφ.

In this formulation, variable bounds are specific to the subdomain for which the
lower bounding functions are constructed. Lforcefield refers to the convex represent-
ation of the objective function, as given by:

Lforcefield = Eforcefield +
Nφ∑
i=1

αφi
(
φLi − φi

) (
φUi − φi

)
. (3)

The α parameters represent nonnegative parameters which must be greater or equal
to the negative one–half of the minimum eigenvalue of the Hessian ofEforcefield over
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Figure 3. Convex underestimator constructed for one-dimensional nonconvex objective func-
tion.

the defined domain. Rigorous bounds on the α parameters can be obtained through
a variety of approaches (Maranas and Floudas, 1994a; Adjiman and Floudas, 1996;
Adjiman et al., 1998a,b; Hertz et al., 1999). The overall effect of these terms is to
overpower the nonconvexities of the original terms by adding the value of 2α to the
eigenvalues of the Hessian of Eforcefield. An illustration of the convexification of a
nonconvex objective function is given in Figure 3. The αBB approach can also be
applied to general formulations involving nonlinear constraint sets. For example,
the use of nonlinear distance constraints requires a reformulation of the problem
given in Equation (1), the solution of which will be detailed in section Section 5.

Once solutions for the upper and lower bounding problems have been estab-
lished, the next step is to modify these problems for the next iteration. This is
accomplished by successively partitioning the initial domain into smaller subdo-
mains. For the protein conformation problems, it has been found that an effect-
ive partitioning strategy involves bisecting the same variable dimension across
all nodes at a given level. In order to ensure non-decreasing lower bounds, the
hyper-rectangle to be bisected is chosen by selecting the region which contains the
infimum of the minima of lower bounds. A non–increasing sequence for the upper
bound is found by solving the nonconvex problem locally and selecting it to be
the minimum among all conformers in the upper bound list. If the single minimum
of Lforcefield for any hyper-rectangle is greater than the current upper bound, the
global minimum cannot exist within this region and the entire subdomain can be
deleted from the list of searchable regions (fathoming step). The computational
requirement of the αBB algorithm depends on the number of variables (global) on
which branching occurs.

The use of the αBB method is also amenable to the integration of other stochastic
or heuristic search techniques for enhancing and improving the identification of
low energy conformations. In other words, the solution of the upper bounding
problem (i.e., the original nonconvex problem) is not limited to the use of nonlinear
local minimization techniques. For the problems related to the derivation of loop
restraints, a particularly successful marriage is the use of the Conformational Space
Annealing (CSA) algorithm (Lee et al., 1997) as an upper bounding solver within
the αBB framework (Klepeis et al., 2002).

The end result of this procedure is a set of restraints for those residues con-
necting consecutive elements of secondary structure. In particular, these restraints
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take the form of reduced φ and ψ domains for the loop residues, which are ex-
tracted from the set of low free energy conformers identified for the oligopeptides
representing these segments. For smaller loop segments, and for those segments
connecting β-sheet topology, the reduced dihedral angle bounds are relatively tight,
thus focusing the search for the overall three dimensional structure.

5. Tertiary Structure Prediction

The final stage of the approach involves the prediction of the tertiary structure
of a full protein sequence. The problem formulation is based on the development
of atomic distance and dihedral angle restraints derived from the α-helix, β-sheet
and loop prediction results, as detailed in Section 4. In its final form, the problem
requires the use of constrained nonlinear global optimization techniques. In this
work, a combination of the deterministically based αBB global optimization ap-
proach and molecular dynamics in torsion angle space (TAD) is used to solve this
problem (Klepeis et al., 1999).

The restrained global minimization problem is formulated as an unconstrained
minimization with a hybrid energy function :

E = Eforcefield +WresEres. (4)

The energy, E, specified by this target function includes a chemical description of
the protein conformation through the use of a force field,Eforcefield. These force field
potentials are typically much simpler representations of all atom force fields. The
distance and dihedral angle restraints appear as penalty terms, Eres, with weights,
Wres, that should be driven to zero.

When expanded, the second term of Equation (4) becomes:

Eres = Edistance + Edihedral. (5)

Here Edistance and Edihedral represent the violation energies based on the distance
and dihedral angle restraints, respectively. These functions can take several forms,
although a simple square well potential is commonly used, and includes a sum-
mation over both upper and lower distance violations. For example, Edistance =
E

upp
distance + Elow

distance. For upper distance restraints:

E
upp
distance =

∑
j

{
Aj(dj − dupp

j )2 if dj > d
upp
j ,

0 otherwise.
(6)

The squared violation energy is considered only when the calculated distance dj
exceeds the upper reference distance dupp

j . This squared violation is multiplied by
a weighting factor Aj . Similarly, violations are calculated for those distances that
deviate beyond a lower distance limit d low

j :

Elow
distance =

∑
j

{
Aj(dj − d low

j )2 if dj < d low
j ,

0 otherwise.
(7)
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For dihedral angle restraints the functional form is similar to that of Equations
(6) and (7) in that the total violation, Edihedral, is a sum over upper and lower
violations (i.e., Edihedral = Eupp

dihedral + Elow
dihedral). A dihedral angle, ωj , can be re-

strained through a quadratic square well potential using upper (ωupp
j ) and lower

(ωlow
j ) bounds on the variable values. However, due to the periodic nature of these

variables, a scaling parameter must be incorporated to capture the symmetry of
the system. The full periodic region is centered on the region defined by the al-
lowable bounds so that all transformed values will lie in the domain defined by
[ωlow
j − �Hωj , ωupp

j + �Hωj ], where �Hωj is equal to half the excluded range
of dihedral angle values (i.e., �Hωj = π − (ωupp

j − ωlow
j )/2). This results in the

following set of equations:

E
upp
dihedral =

∑
j


 Aj

(
1− 2

[
ωj−ωupp

j

2π−(ωupp
j −ωlow

j )

]2)
(ωj − ωupp

j )
2 if ωj > ω

upp
j ,

0 otherwise,
(8)

Elow
dihedral =

∑
j


 Aj

(
1− 2

[
ωj−ωlow

j

2π−(ωupp
j −ωlow

j )

]2)
(ωj − ωlow

j )
2 if ωj < ωlow

j ,

0 otherwise.
(9)

Since the sets of restraints provided by the initial stages of the approach are
relatively sparse, a detailed atomistic force field is employed in lieu of the more
typically simplistic potentials. Specifically, the ECEPP/3 force field, as depicted
in Figure 2, is again utilized. With these modifications, the objective function of
Equation (4) becomes :

ED = Edistance + Edihedral + EECEPP/3. (10)

The usual method for solving the unconstrained global optimization problem
presented by Equation (10), which is similar in form to those formulations for
NMR structure prediction, is to explore the conformational space using a com-
bination of simulated annealing and molecular dynamics. These techniques are
stochastic in nature and generally require the selection of a set of initial points to
be optimized. The conformers are then grouped according to their evaluation, from
which a sample of approximately 100 structures are selected for further analysis.
From this group a smaller subset of 20–50 conformers are used to characterize
the system. In terms of global optimization, simulated annealing is used because
it provides a means for escaping local minimum energy wells and broadening the
search.

The advances in this work include the transformation of the mathematical for-
mulation of the general unconstrained problem to a constrained global optimization
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problem. This reformulation removes both Edihedral and Edistance from the target
function, leaving only Eforcefield :

min
φ

EECEPP/3, (11)

subject to Edistance
l (φ) � Eref

l l = 1, . . . , NCON,

φLi � φi � φUi , i = 1, . . . , Nφ.

As before i = 1, . . . , Nφ corresponds to the set of dihedral angles, φi , with φLi and
φUi representing lower and upper bounds on these dihedral angles. In general, the
lower and upper bounds for these variables are set to -π and π , although appropri-
ate bounds, as derived above, are also suitable. Eref

l are reference parameters for
the NCON constraints. The set of constraints are completely general, and represent
either the full combination of distance restraints or smaller subsets of the define
distance restraints. A physically appealing procedure is to define a single restraint
for each element of structure. That is, for each helix, the set of hydrogen bonding
distances that define the helix can be formulated as a single restraint and controlled
individually. In a similar fashion for each β-sheet match, the set of hydrogen bond
distances can be combined to form a single constraint. In this way the maximum
and average violation for each structural element can be controlled separately. A
constraint including all distance can also be included to limit the violation of the
total structure.

The constraints, through reduction of the feasible search space, serve two im-
portant purposes: (1) attempt to correct any deficiencies of the energy model, and
(2) focus the efforts of the global optimization algorithm. Through the use of
this constrained optimization approach, the dihedral angle bounds are implicitly
included as box constraints, while distance restraints are treated explicitly.

As alluded to in Section 4, the general nonconvex constrained problem is solved
via the αBB global optimization approach. As before, a converging sequence of
upper and lower bounds is generated, with the upper bounds on the global min-
imum are obtained by local minimizations of the original nonconvex problem.
Lower bounds belong to the set of solutions of the convex lower bounding prob-
lems, which are constructed by augmenting the objective and constraint functions
through the addition of separable quadratic terms. The formulation for the lower
bounding function becomes:

min
φ

Lforcefield(φ), (12)

subject to Ldistance
l (φ) � Eref

l l = 1, . . . , NCON,

φLi � φi � φUi , i = 1, . . . , Nφ.

The formulation is similar to that given by Equation (3) with an additional set of
equations for the distance restraints. Ldistance

l denotes the convex relaxation of these
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Figure 4. Convex underestimator constructed for two dimensional nonconvex constraint set.

inequality constraints as given by:

Ldistance
l = Edistance

l +
Nφ∑
i=1

αdistance
φi ,l

(
φLi − φi

) (
φUi − φi

)
. (13)

An illustration of the convexification of a nonconvex constraint set is given in Fig-
ure 4, as constructed by overpowering the nonconvexities of the original function
through the addition of 2α to the eigenvalues of the Hessian of Eforcefield.

The highly nonlinear form of the potential energy function coupled with the
nonconvexities of the constraints substantially increases the difficulty in identifying
low energy feasible points for the αBB approach. On the other hand, although TAD
methods perform well for strongly determined systems, such methods are much
more ambiguous for systems displaying sparse sets of restraints. To alleviate these
difficulties a relatively fast TAD simulation is implemented as a preprocessing
step to the local minimization of the upper bounding problem. As a result, the
performance of the αBB approach is improved significantly through the rapid
determination of good approximations to the global minimum energy.

5.1. TORSION ANGLE DYNAMICS

Standard unconstrained molecular dynamics simulations have been used extens-
ively to model the folding and unfolding of protein systems (Caves et al., 1998;
Daggett et al., 1998; Duan and Kollman, 1998). In addition, several methods for
NMR structure calculation have been based on molecular dynamics in Cartesian
space (Brünger, 1992). Torsion angle dynamics differs from traditional molecular
dynamics in that bond lengths and bond angles are fixed at equilibrium values,
thereby allowing for a transformation from the Cartesian to the internal coordin-
ate system. The constraints on the systems also dampen high frequency motions,
which permits the use of longer time steps during the numerical integration of
the equations of motion. The use of TAD in place of conventional MD has been
found to improve the efficiency of NMR structure prediction (Rice and Brünger,
1994; Güntert et al., 1997).
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A major disadvantage for employing TAD in place of Cartesian MD is that
the equations of motion become much more complex for the constrained system.
For unconstrained Cartesian MD the accelerations of the atoms can be calculated
independently due to the decoupled nature of the equations of motion. The addition
of constraints to the Cartesian system transforms the equations from a system of
ODEs to a system of differential algebraic equations (DAEs). The alternative to
solving this system of DAEs is to transform the equations of motion to the internal
coordinate reference frame. In this case, the solution of a linear matrix equation
in each time step is required, which, due to the highly coupled structure of the
equations, scales as a cubic function of the number of degrees of freedom (tor-
sion angles). To avoid the potentially prohibitive computational cost required for
the solution of the equations of motion, a fast recursive algorithm, which scales
linearly with the number of torsion angles, was implemented. The algorithm is
based on spatial operator algebra which has been used to simulate the dynamics
of astronautical and robotic equipment (Jain et al., 1993), the details of which are
given in the Appendix.

5.2. ALGORITHMIC STEPS

The algorithmic steps for the constrained αBB approach can be generalized to any
force field model and routine for local minimization of constrained optimization
problems. In this work, the αBB approach is interfaced with PACK (Scheraga,
1996) and NPSOL (Gill et al., 1986). PACK is used to transform to and from
Cartesian and internal coordinate systems, which is needed to obtain function and
gradient contributions for the ECEPP/3 force field and the distance constraint equa-
tions. NPSOL is a local nonlinear optimization solver that is used to locally solve
the constrained upper and lower bounding problems in each subdomain.

The implementation is composed of two basic phases: initialization and com-
putation. The basic steps of the initialization phase are as follows :
(1) Choose the set of global variables. Since the bounds on these variables will

be refined during the course of global optimization, they should be selected
according to their influence on the structure of the molecule. In this work
(and in general) the φ and ψ (backbone) dihedral angles provide the largest
structural variability, and are chosen as the global variable set. The remaining
dihedral angles, which generally describe side chain configurations, are treated
as local variables.

(2) Set upper and lower bounds on all dihedral angles (variables). If information is
not available for a given dihedral angle, the variable bounds are set to [-π ,π ] or
to some symmetry based region. Since a constrained local optimization solver
is used, these box constraints are strictly enforced.

(3) Identify the set of derived distance restraints to be used in the constraints.
Although the formulation can handle multiple constraints, distance restraints
were included as one constraint (NCON = 1) for the computational studies.
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(4) Choose the value of Eref
l to be used in the constraint equations. This can be

determined by simply performing several local constrained optimizations or
possibly a short global optimization run with simplified energy models.

(5) Identify initial α values for both the objective and constraint functions.
(6) Set initial best upper bound to an arbitrarily large value.

The computation phase is iterative in nature, and depends on the refinement
of the original domain through partitioning along the global variables. In each
subdomain, upper and lower bounding problems are solved locally and used to
develop the sequence of converging upper and lower bounds. The basic steps are
as follows:
(1) The original domain is partitioned along one of the global variables.
(2) Lower bounding functions for both the objective and constraints are construc-

ted in both subdomains. A constrained local minimization is performed using
the following procedure :

(A) 100 random points are generated and used for evaluation of the lower
bounding objective function and constraints. The point with the minimum
objective function value is used as a starting point for local minimization
using NPSOL.

(B) If the minimum value found is greater than the current best upper bound
the subdomain can be fathomed (global minimum is outside region), other-
wise the solution is stored.

(3) The upper bounding problems (original constrained formulation) are then solved
in both subdomains according to the following procedure :

(A) Set counter, c = 1. 100 random points are generated and used for evalu-
ation of the objective function and constraints. The point with the minimum
objective function value and smallest violation of the constraints is used
as a starting point to perform TAD (1000 high temperature steps followed
by 3000 annealing steps) using the simplified target function. The torsion
angle bounds of the current subdomain determine the dihedral angle restraint
functions. In addition to the NOE derived distance restraints, sterically based
distance restraints are added to prevent van der Waals overlaps.

(i) If the Edistance
l < Eref

l ∀l = 1, . . . , NCON, go to step 3.B. Else go to step
3.A.ii.

(ii) Increment counter, c = c+1. If c < 5, reduce weight of sterically based
distance restraints, perform new TAD and go to step 3.A.i. Else go to step
3.B.

(B) Set counter, c = 1. Perform local minimization using NPSOL with dihed-
ral angle box constraints to implicitly enforce bounds. The objective func-
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tion is a weighted combination of forcefield energy and distance restraint
terms :

E = EECEPP/3 +
∑
l

WlE
distance
l . (14)

where the weights, Wl , are based on the violation of the distance constraints
:

Wl =
√

1+ E
distance
l

Eref
l

. (15)

(i) If Edistance
l < Eref

l ∀l = 1, . . . , NCON, go to step 3.C. Else go to step
3.B.ii.

(ii) Increment counter, c = c + 1. If c < 5, increase weight of distance
restraint terms, perform TAD (100 high temperature steps followed by
300 annealing steps) and go to step 3.B.i. Else go to step 3.C.

(C) Solve the constrained minimization problem using NPSOL and store all
feasible solutions.

(4) The current best upper bound is updated to be the minimum of those thus far
stored.

(5) The subdomain with the current minimum value of Lforcefield, as given by Equa-
tion (12), is selected and partitioned along one of the global variables.

(6) If the best upper and lower bounds are within a defined tolerance the program
will terminate, otherwise it will return to Step 2.

5.3. IMPLEMENTATION ISSUES : DISTRIBUTED COMPUTING

The final stage of the approach employs a combination of the deterministically
based αBB global optimization algorithm and molecular dynamics in torsion angle
space to solve a constrained tertiary structure prediction problem. Since the torsion
angle dynamics serves as an initialization strategy in the αBB algorithm, paral-
lelization simply mirrors the overall branch and bound nature of the approach.
A characteristic of a branch and bound framework is that as the size of the do-
main decreases, the quality of the representation improves, which implies that
finer initial domains should result in better approximations. This is equivalent to
simultaneously exploring multiple domains in order to perform a more efficient
search, which coincides with the rationale behind advocating the development of a
parallel algorithm.

Distributed frameworks for branch-and-bound algorithms can rely on two basic
protocols. The simplest conceptual structure consists of a tree hierarchy in which
a master processor directs the overall flow of the algorithm. In this case, global
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communication constructions can be maintained in order to control termination and
domain processing. The second alternative relies on a ring structure in which all
processors act locally and utilize predetermined communication patterns to relay
information and detect termination.

Due to the significant computational effort required to initialize and solve the
constrained tertiary structure prediction problems for a single node in the branch
and bound tree, communication overhead does not substantially affect overall pro-
cessing time. That is, the time spent in solving the lower and upper bounding
problems for each region is long relative to the time required for communication.
Therefore, a simple tree hierarchy through a master–slave decomposition approach
has been implemented. The implementation requires the creation of only one com-
munication group in which a single master processor maintains the list of lower
bounds. The initial domains for the slave nodes are determined by the master
through partitioning of the global domain to the appropriate level in the branch-
and-bound tree, and these regions are sent to the nodes for further processing. Once
the upper and lower bounding problems have been solved, the relevant information
is returned to the master, which extracts and sends to the idle node the next region
from the lower bound list. The local processing of each domain may also encom-
pass several levels in the branch and bound tree depending on the computational
requirements for solving one node in the tree.

Several factors affect the computational requirements for solving this
constrained tertiary structure prediction problem. Most notable are the form of the
energetic model, the form of the constraint functions and the number of global
variables for the system. For a system of approximately 60 residues, the tertiary
structure prediction phase, as described above, requires two days of CPU time on
a 80 processor distributed computing environment running Linux (16 Pentium-III
450 MHz and 64 Pentium-III 600 MHz processors).

6. Computational Studies

6.1. BOVINE PANCREATIC TRYPSIN INHIBITOR

The approach for tertiary structure prediction was applied to bovine pancreatic
trypsin inhibitor (BPTI), a small globular protein found in many tissues throughout
the body. BPTI inhibits several of the serine protease proteins such as trypsin,
kallikrein, chymotrypsin, and plasmin, and is a member of the pancreatic trypsin
inhibitor (kunitz) family, which is a family of serine protease inhibitors. These
proteins usually have conserved cysteine residues that participate in the formation
of disulfide bonds. In particular, BPTI possesses three disulfide bonds, which are
denoted as Cys5–Cys55, Cys14–Cys38, and Cys30–Cys51. The structure of the
58-amino acid residues chain of BPTI has been resolved through several methods,
including X-ray crystallography (4PTI) (Deisenhofer and Steigemann, 1975) and
a combination of X-ray and neutron diffraction experiments (5PTI) (Wlodawer et



132 J. L. KLEPEIS AND C. A. FLOUDAS

al., 1984). Basic secondary structural features include a N-terminal 310 helix, a
C-terminal α-helix and several antiparallel β-strand configurations.

For BPTI tertiary structure prediction the α-helix and β-sheet prediction results
in defined dihedral angle domains for 30 of the 58 total residues. The α-helical
φ-ψ domain was assigned to residues 2–5 and 47–54, while the β-strands between
residues 17–23, 29–35 and 44–46 assumed dihedral angle bounds from the exten-
ded region of the φ-ψ domain space. Lower and upper Cα–Cα distance restraints
were introduced to enforce α-helix hydrogen bonding and β-sheet formation. An
additional six upper and lower distances were placed on the Sγ atoms between
cystine residues to enforce the correct disulfide bridge network. These distance
constraints were used to formulate one nonconvex constraint, as represented by the
325 dimensions for the dihedral angle variables of the BPTI system.

Using these restraints, the combined global optimization approach and torsion
angle dynamics protocol was applied to the BPTI structure prediction problem.
During the course of the global optimization search, the branch and bound tree
was formed by partitioning domains belonging to the 52 φ and ψ variables of the
undefined (loop) residues. Along with the global minimum energy structure, a set
of low energy solution structures was identified. To gauge these results, comparis-
ons between the crystallographically derived structure and the predicted structures
were based on RMSD (root mean squared deviations) between the Cα atoms. A
significant sample of low energy structures with Cα RMSD (root mean squared
deviation) values below 6.0 Å was identified along with the global minimum energy
structure.

The lowest energy structure, with an energy of -428.0 kcal/mol, also provided
the best superposition with the crystallographic structure, with a 4.1 Å RMSD (see
Figure 5).

6.2. IMMUNOGLOBULIN BINDING DOMAIN OF PROTEIN G

Protein G is a small globular protein produced by several streptococcal species. The
proteins are composed of two or three nearly identical domains of about 55 amino
acids each. The system considered here is the immunoglobulin-binding domain
from streptococcal protein G, a 56-amino acid polypeptide. The structure contains
an efficiently packed hydrophobic core between a four-stranded β-sheet and a
four-turn α-helix (Gronenborn et al., 1991) with an overall secondary structure of
ββαββ. The formation of the β-sheet consists of two β-hairpin turns, each connect-
ing antiparallel strands. The first and last strands combine to form the final parallel
β-sheet to give the four-stranded configuration. Experimental structures have been
determined using both crystallographic (Gallagher et al., 1994) and NMR-derived
(Gronenborn et al., 1991) data.

Analysis of the immunoglobulin binding domain of Protein G has also been the
focus of theoretical studies on protein folding. In particular, the third and fourth
β-strands have been used to model the formation of β-sheet structure through
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Figure 5. Comparison of predicted lowest energy tertiary structure (in black) of BPTI and
experimentally derived structure (in grey). The structures begin with the N-termini at the upper
right hand corner of the figure and end with the C-termini at the upper left hand corner of the
figure.

hairpin folding. Initial observations included the proposal of a simple statistical
mechanical model in which the formation of hydrogen bonds, through a zipper
mechanism, drives hairpin folding (Munoz et al., 1997). More recently, simulations
have shown that an early step in hairpin folding is the formation of a hydrophobic
cluster (Dinner et al., 1999; Pande and Rokhsar, 1999; Bryant et al., 2000).

For the immunoglobulin binding domain of Protein G the α-helix and β-sheet
prediction results were used to set dihedral angle domains for 33 of the 56 total
residues. The α-helical φ–ψ domain was assigned to residues 23–34, while the
β-strands between residues 1–7, 16–21, 43–45 and 51–55 were assigned dihed-
ral angle bounds from the extended region of the φ-ψ domain space. 22 lower
and upper Cα–Cα distance restraints were introduced to enforce α-helix hydrogen
bonding and β-sheet formation. The tertiary structure prediction problem was for-
mulated using one nonlinear constraint for the distance restraints across the total
332 dimensions of the nonconvex dihedral angle hyperspace.

The 23 residues not belonging to helices or strands were treated as loop residues.
This provided a set of 56 φ and ψ variables upon which the branch and bound tree
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was constructed. The bounds of these residues were reduced through the analysis
of free energy runs for oligopeptides. The combined global optimization approach
identified an ensemble of low energy structures, which were compared to the exper-
imentally derived structure by performing RMSD (root mean squared deviations)
calculations between the Cα atoms. As with BPTI, a significant sample of low
energy structures with RMSD values below 6.0 Å were discovered. For the immun-
oglobulin binding domain of Protein G, the structure exhibiting the best RMSD
value of 4.2 Å also provided the lowest energy value.

The superpositioning of the structure exhibiting the lowest RMSD with the ex-
perimentally determined structure is shown in Figure 6. The superposition provides
an RMSD of 4.2 Å RMSD, while the structure assumes an energy of -267.0 kcal/mol.

7. Conclusions

The multi-stage ASTRO-FOLD approach provides a general framework for ab-
initio prediction of the three-dimensional structure of a protein. The method is
grounded on physical insight into the formation of helical and β-structure, and
exploits this information in the formulation and solution of the overall structure
prediction problem.

In the first stage, detailed free energy calculations including both solvation and
ionization effects, are used to identify initiation and termination sites of helices.
The second stage, the prediction of β-structure, relies on the principles of a hydro-
phobically driven collapse to formulate an integer linear optimization problem to
identify β-sheet and disulfide bridge connectivity.

The final stages exploit information from the first two stages to develop re-
straints on the overall tertiary structure prediction problem. These restraints are
similar in form to the structure prediction problem using experimental data, and
the formulation and solution of this problem borrows from advancements made in
this area. Both the novel modeling and search components enhance the applicab-
ility and increase the prediction accuracy of the approach over competing solution
schemes. The agreement between experimental and predicted structures makes
ASTRO-FOLD a very promising method for generic tertiary structure prediction
of polypeptides.

Appendix

The TAD algorithm solves for the torsional accelerations, φ̈φφφφ :

M(φφφφφ)φ̈φφφφ + C(φφφφφ, φ̇φφφφ) = 0. (16)

In this equation M is an N ×N nonlinear mass matrix and C is the N dimensional
vector of velocity dependent (Coriolis and other) forces. φφφφφ, φ̇φφφφ and φ̈φφφφ represent the
torsional position, velocities and accelerations, respectively. The ability to calcu-
late the accelerations recursively relies on the chainlike structure of the protein, in
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Figure 6. Comparison of predicted (lowest RMSD) tertiary structure (bottom) of immuno-
globulin binding domain of Protein G and experimentally derived structure (top).

which each node of the chain represents a rigid body. These rigid bodies consist of
one atom or a cluster of atoms whose relative positions are fixed. To simplify the
explanation of the algorithm, an unbranched chain will be considered, although the
approach can be easily extended to branched systems. For this simple case, the first
rigid body, at one end of the chain, defines the base (k = 0), while the last rigid
body, at the other end of the chain, defines the tip (k = N). The rotatable torsion
angle between bodies k and k − 1 is defined as φk.
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The framework of the algorithm to calculate φ̈φφφφ can be broken down into three
steps :

(1) A recursion from the base to the tip is required to calculate the positions,
spatial velocities, Coriolis and gyroscopic terms for each of the rigid bodies.
To proceed the 6× 6 spatial transformation matrix, sk, between rigid bodies k
and k − 1 must first be defined :

sk =
[
I3 l̃(rk − rk−1)

03 I3

]
. (17)

Here I3 andO3 denote the 3×3 dimensional identity and zero matrices, while
the l̃ operator refers to the cross product tensor associated with rk − rk−1,
where rk is the position vector that defines the reference frame for rigid body
k. The spatial velocity, Vk, can be computed from the following relation :

Vk = sTk Vk−1 +HT
k φ̇k. (18)

The spatial velocity is a six-dimensional vector that combines both the three
dimensional angular, ω, and linear, v, velocities :

Vk ≡
(
ωk
vk

)
. (19)

Hk is also a six dimensional vector with the first three elements corresponding
to the unit vector, ek , in the direction of the bond forming the connection
between rigid bodies k and k − 1 :

Hk ≡
(

ek
0

)
. (20)

The Coriolis and gyroscopic terms, ak and bk, respectively, can then be calcu-
lated using the following relationships :

ak =
(

0
ω̃k−1[vk − vk−1]

)
+

(
ω̃k 0
0 ω̃k

)
HT
k φ̇k (21)

bk =
(

ω̃kJkω̃k
mkω̃kω̃kYk

)
. (22)

Both ak and bk are six dimensional vectors. mk, Yk and Jk represent the
mass, the center of mass vector, and the 3 × 3 inertia matrix for the rigid
body, respectively. Finally, the spatial inertia, Lk, of the rigid body about the
reference frame is given by the following 6× 6 matrix:

Lk =
(

Jk mkỸk
−mkỸk mkI3

)
. (23)



AB INITIO TERTIARY STRUCTURE PREDICTION OF PROTEINS 137

(2) The next step requires a backward recursion from the tip, k = N , to the base,
k = 1. The recursion is used to store a number of auxiliary quantities needed
for the final forward recursion to calculate the accelerations. In addition, the
gyroscopic terms, bk, and the spatial inertia terms, Lk, calculated in step 1 can
be used to initialize two auxiliary quantities, zk and Pk, respectively. Both Pk
and zk are updated recursively using the following intermediate terms :

Dk = HkPkHT
k (24)

Gk = PkHT
k D
−1
k (25)

εk = −Hk(zk + Pkak)−∇Ek. (26)

Here Dk and εk denote scalar quantities, while Gk is a six dimensional vector.
The final equation requires the gradient of the potential function, ∇Ek. The
recurrence relationships for Pk−1 and zk−1 are given by :

Pk−1 ← Pk−1 + sk(Pk −GkHT
k Pk)sTk (27)

zk−1 ← zk−1 + sk(zk + Pkak +Gkεk). (28)

(3) A final forward recursion from the base to the tip is used to obtain the φ̈φφφφ values.
The six dimensional vector αk is used to store intermediate quantities, with αk
equal to a vector of zeroes for k = 0.

αk = sTk αk−1 (29)

φ̈k = εkD−1
k −Gkαk. (30)

The following recursion relation is used to update the values of αk

αk ← αk +Hkφ̈k + ak. (31)

For branched molecular structures, each node can potentially spawn more than
one child so that both the inward and outward recursions must be modified. In
the case of an inward recursion, the results from each of the child nodes must be
summed up before moving up one level. In the case of the outward recursion, each
of the node branches requires a separate recursion.

The TAD is carried out using simulated annealing, with temperature control
provided by coupling to an external bath (Berendsen et al., 1984). This coup-
ling provides a means for forcing or damping the torsional velocities using the
following scaling factor at time t :

fT =
√

1− 1

β
+ To

βT (t)
. (32)
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In this equation, β is a force constant, while To is the bath temperature and T (t)
is the actual temperature. The actual temperature is calculated from the kinetic
energy, Ekinetic, with the following relationship :

T (t) = 2Ekinetic(t)

NφkB
. (33)

where kB is the Boltzmann constant. The value for fT is used to scale the torsional
velocities :

φ̇φφφφ(t)← fT φ̇φφφφ(t). (34)

Once torsional velocities have been determined, the accelerations, φ̈φφφφ, can be
calculated using the recursive algorithm outlined above. As a simple implementa-
tion, a basic leap-frog technique is then employed to calculate velocities at the half
time-step, which can be used to calculate torsional positions, φφφφφ, and new estimated
velocities at the full time step.
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